
Node Modules
import, export, require



Lesson Plan
● What are modules and why use them
● Creating our first module
● importing our module
● importing built-in module
● npm - using community module

Summary of this lesson is in this url:

https://www.nerdeez.com/articles/node/modules



What are modules

● The code we write today, we might want to use tomorrow as well
● It’s good practice to split our code to reusable blocks and use those blocks 

today and in the future. 
● a module is a library consisting of one or more files.
● The module consists of private and public sections
● The public sections expose a certain API which we can use when importing 

the module
● Node programs are built to be modular and we must keep that in mind when 

writing our own code and keep our code modular as well.



How node runs a module

● node treats every file as a module
● when executing a module node will wrap the module in a function:

function(exports, require, module, __filename, __dirname) {

...

}

● We can use the arguments of that function in the module we will write



Wrapping arguments

● node wraps every module with a function with the following arguments
○ __dirname - absolute path of directory of current module
○ __filename - absolute path of the file of the current module
○ exports - you can attach properties here and they will be exported
○ module - module object of the current module
○ require - used to require modules 



Our first module
● let’s create our first module
● In the module we will create a class called Person with a public property 

called name
● we will create a method in that class called sayHello which prints that name
● We will create another class in that file called Student which inherits from 

Person but also has a property called grade
● the Student class extends the sayHello and also prints the student grade
● From this file we would like to export only the Student class



Importing our module

● Now lets create another file and in that file use the module we just created.
● Notice that require can get a relative path to a file
● the relative path is relative to the current module that is doing the import 



Javascript classes, and modules in ES6

● lets go over how we create classes with js
● how we create instances
● and es6 module import and export.



Built-in modules

● modules that are built-in in node’s binary
● when doing require with no relative path node will first look for the module in 

the built in library.
● lets try to use the built in module for dealing with the file system, this module 

is called: fs



Community packages
● one of the advantages of using node is the large community, and how easy it 

is to share you packages with the outside world. 
● There are thousands of open source packages you can install and use in your 

code. 
● Some of those packages are in really high quality, tested, with a lot of 

contributors. 
● The usage of community packages saves you a lot of time and make you 

focus on your app and not the tools you will need. 
● Lets learn how we deal with external packages in node.



What is NPM

● Node Package Manager
● with npm you can

○ Use community packages
○ Publish your package
○ Maintain package version and easily update the package you are using

● npm started as NodeJs backend package manager but today it’s also used to 
install frontend package



Install NPM
● Install NodeJs - npm arrives with node
● https://nodejs.org/en/
● you can verify npm is installed by typing: npm -v

https://nodejs.org/en/


package.json

● each project or module that has use of npm will have a package.json file
● The file will contain information on the current project you are creating
● The file will be in JSON format
● Information includes:

○ package name
○ package version
○ dependencies
○ devDependencies
○ peerDependencies
○ author
○ git repo

● to create package.json file: npm init or npm init --yes



package.json - important fields
● name and version together will form an identifier for the package and has to 

be unique
● bugs will hold the url and email to send bug reports
● main - entry point for your package
● dependencies - list of packages that your package depends on and will be 

installed when you install your package
● devDependencies - are not needed to run the package only for preparing it
● peerDependencies - packages that your package assumes that are already 

installed, npm will issue a warning if those packages are not installed
● engines - it’s common to specify the node engine that is required for the 

package



npm registry
● npm registry is where the packages are saved
● when using npm to install a package or to publish a package, npm will refer to 

the registry, to see from which registry your npm is set you can type:
○ npm get registry

● by default when you install npm it is set to: https://registry.npmjs.org
● to set a new url for your registry: 

○ npm set registry <registry-url>
● It’s important for companies to have there private npm registry

https://registry.npmjs.org


Install NPM package

● a package can be installed local or global
● if installed locally the package will be added to the node_modules folder 

where you package.json file is located
● local: npm install <package-name> --save/--save-dev
● global: npm install -g <package-name> (might require admin privileges)
● must of the packages we will install locally, global package are usually used 

to add programs to the command line
● the --save/--save-dev will determine where to save the package version in 

the package.json
● it’s recommended not to push node_modules to the repository
● by default



Uninstall Package
● npm uninstall <package-name> --save
● npm uninstall <package-name> --save-dev
● npm uninstall -g <package-name> 



Scoped Packages
● namespaces for npm modules
● used for grouping related packages together
● scope begins with @
● recommend to prefix company private packages with prefix @hcl
● you can create a private npm repo and make all the scoped packages be 

pushed to private repo
● https://github.com/verdaccio/verdaccio

https://github.com/verdaccio/verdaccio


publishing your package

● After you finished creating your package you can try and publish it to the 
private npm registry

● to publish your package:
○ npm publish

● you might need to create a user to publish a package
○ npm adduser
○ or login if you have a user: npm login



Summary - best practices

● in your angular projects, consider which which items will be required across 
multiple projects, those should be separated to different packages

● when creating a package specify in the package.json the engines for the 
node versions required

● make sure to use in your team nvm and .nvmrc to force the team to work 
with the same node and npm versions

● Usually a company decides of a scoped package of the company 
@pa/hello-world

● you can also set up that packages scoped with: @pa will be published to the 
private registry and all other packages will be published to the public registry



Using community package
● lets try to install community package called lodash and try and use that 

package



Student EX.
● The goal is to publish a package to the company private npm registry
● create a module which exports a function which prints hello world to the 

console
● Create a package.json des
● the package name should be @pa/hello-world-<your-name>
● create a main key in the package json pointing to your file.
● publish your package to the private registry and open another project and try 

to use the package you published.



Summary
● knowing how modules work, how to import and export them, and more 

importantly how to publish your modules, is the first step of a modular 
application, which is the most important aspect of microservice programming.


